kafka学习笔记

文章内索引
[显示]
  • topic:Kafka将消息以topic为单位进行归纳。

一个topic是对一组消息的归纳。对每个topic,Kafka 对它的日志进行了分区,如下图所示:

kafka学习笔记|-翰林小院 第1张

每个分区都由一系列有序的、不可变的消息组成,这些消息被连续的追加到分区中。分区中的每个消息都有一个连续的序列号叫做offset,用来在分区中唯一的标识这个消息。
在一个可配置的时间段内,Kafka集群保留所有发布的消息,不管这些消息有没有被消费。比如,如果消息的保存策略被设置为2天,那么在一个消息被发布的两天时间内,它都是可以被消费的。之后它将被丢弃以释放空间。

实际上每个consumer唯一需要维护的数据是消息在日志中的位置,也就是offset.这个offset有consumer来维护:一般情况下随着consumer不断的读取消息,这offset的值不断增加,但其实consumer可以以任意的顺序读取消息,比如它可以将offset设置成为一个旧的值来重读之前的消息。

以上特点的结合,使Kafka consumers非常的轻量级:它们可以在不对集群和其他consumer造成影响的情况下读取消息。你可以使用命令行来”tail”消息而不会对其他正在消费消息的consumer造成影响。

将日志分区可以达到以下目的:首先这使得每个日志的数量不会太大,可以在单个服务上保存。另外每个分区可以单独发布和消费,为并发操作topic提供了一种可能。

  • producers:将向Kafka topic发布消息的程序成为producers.

Producer将消息发布到它指定的topic中,并负责决定发布到哪个分区。通常简单的由负载均衡机制随机选择分区,但也可以通过特定的分区函数选择分区。使用的更多的是第二种。

  • consumer:将预订topics并消费消息的程序成为consumer.

发布消息通常有两种模式:队列模式(queuing)和发布-订阅模式(publish-subscribe)。队列模式中,consumers可以同时从服务端读取消息,每个消息只被其中一个consumer读到;发布-订阅模式中消息被广播到所有的consumer中。Consumers可以加入一个consumer 组,共同竞争一个topic,topic中的消息将被分发到组中的一个成员中。同一组中的consumer可以在不同的程序中,也可以在不同的机器上。如果所有的consumer都在一个组中,这就成为了传统的队列模式,在各consumer中实现负载均衡。如果所有的consumer都不在不同的组中,这就成为了发布-订阅模式,所有的消息都被分发到所有的consumer中。更常见的是,每个topic都有若干数量的consumer组,每个组都是一个逻辑上的“订阅者”,为了容错和更好的稳定性,每个组由若干consumer组成。这其实就是一个发布-订阅模式,只不过订阅者是个组而不是单个consumer。

  • broker:Kafka以集群的方式运行,可以由一个或多个服务组成,每个服务叫做一个broker.

kafka学习笔记|-翰林小院 第2张

  • partition:

    kafka学习笔记|-翰林小院 第3张
    由两个机器组成的集群拥有4个分区 (P0-P3) 2个consumer组. A组有两个consumerB组有4个

传统的队列在服务器上保存有序的消息,如果多个consumers同时从这个服务器消费消息,服务器就会以消息存储的顺序向consumer分发消息。虽然服务器按顺序发布消息,但是消息是被异步的分发到各consumer上,所以当消息到达时可能已经失去了原来的顺序,这意味着并发消费将导致顺序错乱。为了避免故障,这样的消息系统通常使用“专用consumer”的概念,其实就是只允许一个消费者消费消息,当然这就意味着失去了并发性。

在这方面Kafka做的更好,通过分区的概念,Kafka可以在多个consumer组并发的情况下提供较好的有序性和负载均衡。将每个分区分只分发给一个consumer组,这样一个分区就只被这个组的一个consumer消费,就可以顺序的消费这个分区的消息。因为有多个分区,依然可以在多个consumer组之间进行负载均衡。注意consumer组的数量不能多于分区的数量,也就是有多少分区就允许多少并发消费。

 

消息传输的事务定义

之前讨论了consumer和producer是怎么工作的,现在来讨论一下数据传输方面。数据传输的事务定义通常有以下三种级别:

  • 最多一次: 消息不会被重复发送,最多被传输一次,但也有可能一次不传输。
  • 最少一次: 消息不会被漏发送,最少被传输一次,但也有可能被重复传输.
  • 精确的一次(Exactly once): 不会漏传输也不会重复传输,每个消息都传输被一次而且仅仅被传输一次,这是大家所期望的。

大多数消息系统声称可以做到“精确的一次”,但是仔细阅读它们的的文档可以看到里面存在误导,比如没有说明当consumer或producer失败时怎么样,或者当有多个consumer并行时怎么样,或写入硬盘的数据丢失时又会怎么样。kafka的做法要更先进一些。当发布消息时,Kafka有一个“committed”的概念,一旦消息被提交了,只要消息被写入的分区的所在的副本broker是活动的,数据就不会丢失。关于副本的活动的概念,下节文档会讨论。现在假设broker是不会down的。

如果producer发布消息时发生了网络错误,但又不确定实在提交之前发生的还是提交之后发生的,这种情况虽然不常见,但是必须考虑进去,现在Kafka版本还没有解决这个问题,将来的版本正在努力尝试解决。

并不是所有的情况都需要“精确的一次”这样高的级别,Kafka允许producer灵活的指定级别。比如producer可以指定必须等待消息被提交的通知,或者完全的异步发送消息而不等待任何通知,或者仅仅等待leader声明它拿到了消息(followers没有必要)。

现在从consumer的方面考虑这个问题,所有的副本都有相同的日志文件和相同的offset,consumer维护自己消费的消息的offset,如果consumer不会崩溃当然可以在内存中保存这个值,当然谁也不能保证这点。如果consumer崩溃了,会有另外一个consumer接着消费消息,它需要从一个合适的offset继续处理。这种情况下可以有以下选择:

  • consumer可以先读取消息,然后将offset写入日志文件中,然后再处理消息。这存在一种可能就是在存储offset后还没处理消息就crash了,新的consumer继续从这个offset处理,那么就会有些消息永远不会被处理,这就是上面说的“最多一次”。
  • consumer可以先读取消息,处理消息,最后记录offset,当然如果在记录offset之前就crash了,新的consumer会重复的消费一些消息,这就是上面说的“最少一次”。
  • “精确一次”可以通过将提交分为两个阶段来解决:保存了offset后提交一次,消息处理成功之后再提交一次。但是还有个更简单的做法:将消息的offset和消息被处理后的结果保存在一起。比如用Hadoop ETL处理消息时,将处理后的结果和offset同时保存在HDFS中,这样就能保证消息和offser同时被处理了。

©版权声明:本文为【翰林小院】(huhanlin.com)原创文章,转载时请注明出处!

发表评论

电子邮件地址不会被公开。