基于libsvm实现文本分类

基于libsvm实现文本分类|SVM-翰林小院

其实使用libsvm进行分类很简单,只需要有属性矩阵和标签,然后就可以建立分类模型(model),然后利用得到的这个model进行分类预测了。那神马是属性矩阵?神马又是标签呢?我举一个直白的不能在直白的例子:说一个班级里面有两个男生(男生1、男生2),两个女生(女生1、女生2),其中

男生1 身高:176cm 体重:70kg;男生2 身高:180cm 体重:80kg;女生1 身高:161cm 体重:45kg;女生2 身高:163cm 体重:47kg;

如果我们将男生定义为1,女生定义为-1,并将上面的数据放入矩阵data中,即

 

这样上面的data矩阵就是一个属性矩阵,行数4代表有4个样本,列数2表示属性有两个,label就是标签(1、-1表示有两个类别:男生、女生)。

Remark:这里有一点废话一些(因为我看到不止一个朋友问我这个相关的问题):上面我们将男生定义为1,女生定义为-1,那定义成别的有影响吗?这个肯定没有影响啊!(用脚趾头都能想出来,我不知道为什么也会有人问),这里面的标签定义就是区分开男生和女生,怎么定义都可以的,只要定义成数值型的就可以。比如我可将将男生定义为2,女生定义为5;后面的label相应为label=[2;2;5;5];比如我可将将男生定义为18,女生定义为22;后面的label相应为label=[18;18;22;22];为什么我说这个用脚趾头都能想怎么定义都可以呢?学过数学的应该都会明白,将男生定义为1,女生定义为-1和将男生定义为2,女生定义为5本质是一样的,应为可以找到一个映射将(2,5)转换成(1,-1),so所以本质都是一样的,后面的18、22本质也是一样的。这里要多说一些,如果你原本的数据集合的标签不是数值型的(比如a、b、c)那么你完全可以通过某种转换映射将不是数值型的标签转换成数值型的。

现在回归正题,有了上面的属性矩阵data,和标签label就可以利用libsvm建立分类模型了,简要代码如下:

有了model我们就可以做分类预测,比如此时该班级又转来一个新学生,其身高190cm,体重85kg我们想通过上面这些信息就给出其标签(想知道其是男【1】还是女【-1】)比如 令 testdata = [190 85]; 由于其标签我们不知道,我们假设其标签为-1(也可以假设为1)

Remark:这里又有一点废话一些(因为我看到不止一个朋友问我这个相关的问题):如果测试集合的标签没有怎么办?测试集合的标签就应该没有,否则测试集合的标签都有了,还预测你妹啊!?没有是正确的,就像上面一样,新来的学生其标签咱不应知道,就想通过其属性矩阵来预测其标签,这才是预测分类的真正目的。之所以平时做测试时,测试集合的标签一般都有,那是因为一般人们想要看看自己的分类器的效果如何,效果的评价指标之一就是分类预测的准确率,这就需要有测试集的本来的真实的标签来进行分类预测准确率的计算。

话归正传,即testdatalabel = -1;然后利用libsvm来预测这个新来的学生是男生还是女生,代码如下:

下面我们整体运行一下上面这段恶 搞[e gao]的背景数据和代码(你别笑,这个是真能运行的,也有结果的):

运行结果如下:

哎,我们看到,通过预测我们得知这个新来的学生的标签是1(男生),由于原本我们假设其标签为-1,假设错误,所以分类准确率为0%。好,通过上面的讲解,不知道诸位看官对于利用libsvm进行分类是否有了一定了解【谁要是这么通俗的例子还搞不清楚怎么使用libsvm进行分类,那我真无语啦】,下面使用libsvm工具箱本身带的测试数据heart_scale来实际进行一下测试:

运行结果:

上面的代码基本我不想多说什么。只是说一下参数输入的意义:

-s svm类型:SVM设置类型(默认0) 0 — C-SVC 1 –v-SVC 2 – 一类SVM 3 — e -SVR 4 — v-SVR -t 核函数类型:核函数设置类型(默认2) 0 – 线性:u’v 1 – 多项式:(r*u’v + coef0)^degree 2 – RBF函数:exp(-r|u-v|^2) 3 –sigmoid:tanh(r*u’v + coef0)-g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)-c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1)

更多关于libsvm 参数的说明请看libsvm 参数说明【中英文双语版本】http://www.matlabsky.com/thread-12380-1-1.html还有关于建立的分类模型model


 


©版权声明:本文为【翰林小院】(huhanlin.com)原创文章,转载时请注明出处!

发表评论

电子邮件地址不会被公开。